鉭電容的電介質層是一層五氧化二鉭薄膜,覆蓋在每顆鉭芯表面上。其采用陽極化工藝,由厚5nm~10nm的N型氧化鉭層和五氧化二鉭純半導體層復合而成。層厚與陽極化電壓成比例,同時決定了元件的額定電壓。對用于6V電池應用的固鉭電容而言,最終的鉭電介質層厚度為0.04微米或者40納米。
超大容量的MLCC則采用澆覆厚度為2.0微米的陶瓷電介質薄層的方式來制造,這樣比鉭電容的要厚得多。MLCC采用層疊工藝,最終制造出多層電容。與鉭電容一樣,MLCC的電介質層厚度決定了額定電壓,電介質層數決定了容量。介電常數的差異導致了IR的巨大差別。
鉭電容的DCL會因為正極表面的機械損壞或者氧化層表面的破裂而上升。正極的外表面屬于易損部分,受到熱、機械和電氣作用的共同影響。表面DCL會受濕度的影響,并導致長時間工作的不穩定。
改進鉭芯的生產工藝,更好地控制氧化物層的厚度,在鉭芯的外表面生成較厚的電介質薄膜,防止其受到機械損壞,從而大幅改善DCL性能,降低DCL.除了改進鉭電容的正極結構,與聚合物負極結構相比,鉭電容的二氧化錳負極結構具有更為優異的 DCL 性能,因該材料有更好的導電性。
因為某些醫療設備需要高可靠性,特別是對關鍵任務型應用而言,電容生產廠家提供穩健且保守的設計來滿足性能需求。通過精心的鉭芯和鉭粉設計,醫用鉭電容的性能會高出標準的商用鉭電容以及采用傳統技術生產的高可靠產品。
生產廠家會對每種設計適用的鉭粉進行評估。隨電容器CV的增長,失效率隨之增長,因此應針對具體的設計選擇合適粒徑的鉭粉。對醫用級設計而已,其目的是在可用的外殼尺寸范圍內提供更為可靠的DCL性能。對商用級設計而言,其目的是通過以最小的可用外殼尺寸提供更高的-k CV鉭粉,從而盡量降低成本,最大化設計收益。因此商用鉭電容的DCL總體上會高于醫用鉭電容。
信息來自:
鉭電容 陶瓷電容 二、三極管 晶體振蕩器